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Abstract

A generalized work–energy method for the linear and geometrically nonlinear static analysis of thin isotropic plate

with a cutout is presented. The plate geometry is divided into few quadrilateral segments. Each segment is defined by

four curved edges and the natural coordinates in conjunction with the Cartesian coordinates are used in formulating the

stiffness matrix and the load vector. Two different sets of interpolating functions are used for the geometric and dis-

placement representations respectively. The matrix equation of equilibrium is derived from the variational principle. By

exploiting the geometric symmetry, numerical results are obtained for the following examples: (a) square plate with

circular opening at the centre and (b) circular plate with circular or square inner boundary. The plates are subjected to

uniformly distributed load and both the pinned and fixed outside boundary conditions are considered. Very good

comparison is observed between the present results and those published in the literature for the fixed square plate

without an opening. Effects of the opening size on the displacement are examined in detail.
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1. Introduction

Courant (1943) presented a general view of the mathematicians, physicists and engineers towards the

variational methods for the solution of equilibrium and vibration problems. According to Courant, the

energy method was envisaged independently by Lord Rayleigh and W. Ritz for the numerical solutions of

vibration problems. Lord Rayleigh, in his book––Theory of Sound (vol. 1, 1877 and vol. 2, 1896) and in

other publications, was the first to use this method. In his publications in 1908 and 1909, Ritz gave masterly

account of the energy method and applied it to the plate vibration problem. Courant also raised some

minor objections to the Rayleigh–Ritz method, which were related more to the computational tools

available in those days and time than the method itself. In a review paper, Higgins (1943) described the
work of Ritz who used variational method to solve torsion problem. In the following, works of some
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Nomenclature

a reference length parameter used for normalization

E, m modulus of elasticity and Poisson�s ratio
h plate thickness

k shear correction factor

½kL�, ½kNL� linear and nonlinear stiffness matrices
Njðn; gÞ geometric shape function
p load per unit area

pa4=Eh4 dimensionless load parameter
U strain energy

W work by mechanical forces

u, v, w displacement components at the reference plane of the plate

x, y, z Cartesian coordinates

b1, b2 components of rotation of the normal to the middle plane

ex, ey linear strain components at the middle plane

cxy , cyz, czx linear shear strains at the middle plane
jx, jy , jxy linear curvature-like terms

fCgT fU1 V1 W1 U1 H1 � � � g
/x, /y , /xy nonlinear strain components

fDgT f u v w b1 b2 g, displacement vector
fvgT f ex ey cxy cyz czx jx jy jxy g, strain-curvature vector
XL, XNL linear and nonlinear energy functionals

wjðn; gÞ displacement shape function
n, g parametric coordinates for mapping the geometry
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distinguished researchers who used Rayleigh–Ritz (or related) method to solve static and vibration prob-
lems are briefly discussed first. Then, some description of the work done on the geometrically nonlinear

(GNL) analysis of thin elastic plates by other researchers is also presented.

By applying the energy method and simple algebraic polynomial that satisfied the slope and deflection

boundary conditions, Pickett (1939) obtained the static deflections and moments due to lateral load on a

clamped rectangular plate. He concluded that the method worked better for the uniformly distributed load

than the point load. In his paper Pickett also mentioned that the energy method was developed by Tim-

oshenko (1934) and Ritz. Young (1950) published his work on the vibration of rectangular plates by the

Ritz method. According to him, there were little published data for the vibration of rectangular plates by
Ritz method except for the completely free square plate, which was investigated by Ritz himself. Using the

functions defining the normal modes of vibration of a uniform beam, Young obtained results for the

frequencies and associated mode shapes for three specific problems: (i) square cantilever plate, (ii) square

plate clamped at all sides and (iii) square plate having two adjacent sides clamped and other two edges free.

Warburton (1954), using the Rayleigh method and assuming that waveforms of vibrating plates and beams

are similar, derived approximate frequency formulas for 21 combinations of boundary conditions.

Leissa (1969) published a monograph which inspired literally hundreds of researchers and tremendous

amount of interest was shown on the topic of vibration of plates. He then published a paper (Leissa, 1973)
giving comprehensive and accurate results for the free vibration of rectangular plates. Exact characteristic

equations were derived for six cases having two opposite sides simply supported and other two with various

combinations of clamped, simply supported and free edges. He then went on to study 15 other cases,
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without the two opposite sides simply supported, using the Rayleigh–Ritz method with beam functions.

For the next three decades, Leissa applied Rayleigh–Ritz method with great success using algebraic

polynomials to many plate, shell and solid problems. From then on, many researchers used this method in

the field of plate and shell vibrations.
In this paper, the authors present a numerical procedure based on the work–energy method (a modified

form of the Ritz method) for the static analysis of geometrically nonlinear thin elastic plates. Levy (1942a,b)

solved the Th. von Karman’s nonlinear differential equation for the analysis of rectangular plates with
conditions: (a) simply supported on four sides (NACA TR 737) and (b) fully clamped plate under normal

pressure (NACA TR 740). Results from Levy�s study became the standard and are used even today by
researchers working on this problem. Wang (1948) solved von Karman’s equations numerically for the
simply supported rectangular plates having aspect ratios 1.5 and 2.0. Approximate solutions and the

comparison of results with exact solutions in the literature for the large deflections of rectangular and
circular plates with uniformly distributed load were reported by Berger (1955). An excellent bibliography,

enlisting more than 400 journal papers on nonlinear static analysis of circular, rectangular and other shaped

plates, is given in the book by Satyamoorthy (1997). Majority of the papers deals with the problem solved

through classical methods. The geometrically nonlinear analysis of rectangular plates received significant

attention from researchers working with the finite element methods. Murray and Wilson (1969) studied

large deflection behaviour of simply supported square plates and plates undergoing cylindrical bending.

Yang (1972) analysed rectangular plates using the matrix incremental method and successfully compared

deflections and stresses with the results of Levy (1942a,b). A nonlinear quadrilateral plate-bending-element
procedure based on the von Karman strain expressions and Marguerre shallow shell theory was applied by

Bergan and Clough (1973) to study the stability and large deflection characteristics of plates and shallow

shells. Pica et al. (1980) presented a geometrically nonlinear finite element formulation for the bending of

first order shear deformable plates under the assumption of small rotations and reported numerical results

for square, skew, circular and elliptical plates. Singh and Elaghabash (2003) studied the large static de-

flection analysis of square and rhombic plates using the Ritz method. They compared deflection and

stresses with the results of Levy (1942a,b), Rushton (1970), Pica et al. (1980) and ANSYS.

In this work, the plate geometry is divided into quadrilateral segments, each of which is bounded by four
curved/straight edges. Further, the segments are mapped into square using the natural coordinates so that

mathematics in the procedure becomes simple and straightforward. A segment is defined in the Cartesian

coordinate system using eight geometric nodes, four located at the corner points and the other four at the

mid-points of the four edges respectively. Plate equations are based on the first order shear deformation

theory known as the ‘‘Reissner–Mindlin plate theory’’. The nonlinearity is associated with the in-plane strain

components only and the form of the transverse shear strain components and the curvature like terms

remains linear. The displacement fields are defined by much higher order shape functions than the ones

used for the geometric nodes and are associated with the prescribed displacement nodes on boundary and
inside of the plate segment. The model, generally, consists of only a few segments and the components of

displacement and rotation of the normal to the plate surface are matched when the displacement nodes are

located on an edge shared by two segments. The boundary conditions are applied at the displacement

nodes. Considered in this study as numerical examples are the uniformly loaded plate of types: (a) rect-

angular plate with a circular hole at the geometric centre, (b) circular annular plate, and (c) circular plate

with a square opening. The geometric symmetry is used in all calculations.
2. Definition of a plate quadrilateral

In order to create a model for the analysis the middle surface area of plate is divided into a number of
quadrilateral segments, each of which is bounded by four edges in the x–y plane as shown in Fig. 1. The



Fig. 1. A typical plate segment with geometric nodes.
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plate thickness (h) is assumed to be small in comparison with the other dimensions in the x–y plane. The
four corner points are denoted by numbers 1–4 in a counter clockwise sense and the middle edge points by

5–8 as shown. Indices x, y and z represent the coordinates at an arbitrary point in the plate, where z is
measured from the middle plane. Coordinates of the geometric nodes are expressed by ðxj; yjÞ with
j ¼ 1; 2; 3; . . . ; 8. The procedure developed in this study makes use of the parametric coordinates n and g
which map the quadrangle into a square bounded by 	16 ðn or gÞ6 þ 1. The coordinates of an arbitrary
point are interpolated by the following:
xðn; gÞ ¼
X8
j¼1

Njðn; gÞxj

yðn; gÞ ¼
X8
j¼1

Njðn; gÞyj

ð1Þ
Here, Njðn; gÞ for j ¼ 1; 2; 3; . . . ; 8 are known as the shape functions (Weaver and Johnston, 1984). From
here on, all functionals of the plate are expressed in terms of the parametric coordinates n and g. The
Jacobian matrix ½Jðn; gÞ� and its determinant jJðn; gÞj are used in the derivation of the plate equations.
3. Nonlinear elastic plate equations

The displacement components along the Cartesian axes at a point in the plate are denoted by u0, v0 and
w0. Furthermore, the displacement components customarily are expressed in terms of their counter parts at

the middle plane of the plate:
u0 ¼ uþ zb1
v0 ¼ vþ zb2
w0 ¼ w

ð2Þ
In the above, all terms on the right hand side are referred from the middle plane of the plate. Symbols u, v,
w denote the displacement components; b1 and b2 are the components of the rotation of the normal to the
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middle plane of the plate; z is the distance measured from the reference plane in the direction perpendicular
to the plate.

The method requires work–energy expressions for the derivation of the matrix equation of equilibrium.

To proceed in that direction, some vectors containing strains and curvatures as the components are in-
troduced for convenience. These are:
fDgT ¼ f u v w b1 b2 g
fvLg

T ¼ f ex ey cxy cyz czx jx jy jxy g
fvNLg

T ¼ f ex ey cxy /x /y /xy g
ð3Þ
Subscripts L and NL stand for linear and nonlinear cases respectively. The details of the various com-

ponents are defined in terms of the displacement and rotation components:
ex ¼
ou
ox

ey ¼
ov
oy

cxy ¼
ou
oy

þ ov
ox

cyz ¼
ow
oy

þ b2

czx ¼
ow
ox

þ b1

jx ¼
ob1
ox

jy ¼
ob2
oy

jxy ¼
ob1
oy

þ ob2
ox

/x ¼ ð1=2Þ ow
ox

� �2
/y ¼ ð1=2Þ ow

oy

� �2
/xy ¼

ow
ox

ow
oy

ð4Þ
Eq. (4) is based on the nonlinear elastic strain–displacement relationships given by Novozhilov (1953).

Using Eq. (4), and the stress–strain relationships (Singh and Elaghabash, 2003), we can derive the following

form for the strain energy in terms of displacement components including components for the rotation of
the normal to the plate and elastic material properties:
U ¼ ð1=2Þ
Z þ1

	1

Z þ1

	1
ðXL þ XNLÞjJðn; gÞjdndg ð5Þ
where
XL ¼ fvLg
T½D�fvLg and XNL ¼ fvNLg

T½D�fvNLg ð6Þ
Vector fvLg contains midplane linear strain and curvature terms. Similarly, fvNLg is made of membrane
strain components containing both linear and nonlinear terms. Matrices ½D�8
8 and ½D�6
6 are symmetric
with majority of the components being zero. Their non-zero terms are given below:
D11 ¼ D22 ¼ D14 ¼ D41 ¼ D44 ¼ D25 ¼ D52 ¼ D55 ¼ K0

D12 ¼ D21 ¼ D24 ¼ D42 ¼ D15 ¼ D51 ¼ D45 ¼ D54 ¼ mK0

D33 ¼ D36 ¼ D63 ¼ D66 ¼ 0:5ð1	 mÞK0; D44 ¼ D55 ¼ kD33
D66 ¼ D77 ¼ D0; D67 ¼ D76 ¼ mD0; D88 ¼ 0:5ð1	 mÞD0
K0 ¼ E�hh=ð1	 m2Þ; D0 ¼ ð1=12ÞE�hh3=ð1	 m2Þ

ð7Þ
The parameter k is the shear correction factor in the above equation and its value is (5/6). Since the in-
tegration over the plate thickness has already been performed, only the integration of the area of the middle

plane remains to be carried over.
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4. Displacement fields, stiffness matrix and load vector for the quadrilateral

In this section, we discuss the procedure for generating the stiffness matrix and the load vector for the

plate quadrilateral defined earlier in Section 2. The interpolating functions for the displacement fields are of
much higher order than that for the geometry. Therefore, it is now necessary to introduce a different set of

nodes, which may be termed as the displacement nodes. Shown in Fig. 2 is a 7
 6 grid of 42 points to which
displacement degrees of freedom are assigned. To be consistent with the grid size shown in Fig. 2, we

consider fifth order polynomial in n and a sixth order polynomial in g as interpolating functions. Each point
in this figure is assigned five degrees of freedom, such as ðUj Vj Wj Uj Hj Þ corresponding to u, v, w
and b1 and b2 respectively at the jth node. It is now simple to write the components of displacement and the
rotation of the normal as given below:
u ¼
Xn

j¼1
Ujwjðn; gÞ

v ¼
Xn

j¼1
Vjwjðn; gÞ

w ¼
Xn

j¼1
Wjwjðn; gÞ

b1 ¼
Xn

j¼1
Ujwjðn; gÞ

b2 ¼
Xn

j¼1
Hjwjðn; gÞ

ð8Þ
The interpolating functions wjðn; gÞ in Eq. (8) can be deduced in the same manner as Njðn; gÞ in Eq. (1). In
the present formulation, eight nodal points are used for the geometry definition, whereas n ¼ ðp þ 1Þðqþ 1Þ
Fig. 2. The displacement nodes for a plate segment.
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displacement nodes are used. Indices p and q denote respectively the orders of the polynomials in n and g.
The matrix form of the above equation is
fDg ¼ ½ ½w1ðn; gÞ� ½w2ðn; gÞ� ½w3ðn; gÞ� ½–� ½–� ½wnðn; gÞ� �fCg ð9Þ
where fCgT ¼ fU1 V1 W1 U1 H1 U2 V2 W2 U2 H2 U3 V3 � � � g and contains the displace-
ment and rotation components for each displacement node. Matrix ½wjðn; gÞ�5
5 corresponds to the jth
displacement node and is given below:
½wjðn; gÞ� ¼

wjðn; gÞ 0 0 0 0

0 wjðn; gÞ 0 0 0

0 0 wjðn; gÞ 0 0
0 0 0 wjðn; gÞ 0

0 0 0 0 wjðn; gÞ

2
66664

3
77775 ð10Þ
By substituting Eq. (9) into Eq. (4) and using the vectors fvLg and fvNLg introduced in (3), we get
fvLg ¼ ½BL�fCg
fvNLg ¼ ½BNL�fCg

ð11Þ
Because of the large size, matrices ½BL�8
n and ½BNL�5
n are not displayed in this paper. Substituting Eq. (11)

into (5), we obtain the following strain energy expression in terms of the linear and nonlinear stiffness

matrices:
U ¼ ð1=2ÞfCgTð½kL� þ ½kNL�ÞfCg ð12Þ
where
½kL� ¼
Z þ1

	1

Z þ1

	1
½BL�T½D�½BL�jJðn; gÞjdndg and

½kNL� ¼
Z þ1

	1

Z þ1

	1
½BNL�T½D�½BNL�jJðn; gÞjdndg

ð13Þ
Integration here can be carried out numerically using the Gaussian quadrature for which the number of

integration points will depend upon the order of the polynomial used in the displacement fields.

The work done by a uniformly distributed load p0 applied in the transverse direction of the plate under
the assumed displacement field is
W ¼
Z Z

p0wdxdy ð14Þ
Substituting w from Eq. (8) into the above,
W ¼
Z þ1

	1

Z þ1

	1
p0

Xn

j¼1
Wjwjðn; gÞjJðn; gÞjdndg ¼ fCgTfpg ð15Þ
In Eq. (15), fCg is the displacement vector introduced in Eq. (9). The load vector consistent with the present
formulation procedure is
fpgT ¼ f 0 0 p1 0 0 � � � 0 0 pn 0 0 g ð16Þ
and pj ¼ p0
Rþ1
	1

Rþ1
	1 wjðn; gÞjJðn; gÞjdndg. This load is applied in the transverse direction at each dis-

placement node of the plate segment. Other components of the load vector are set to zero as shown in

Eq. (16).
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With the stiffness matrix and load vector defined above, we now work towards the derivation of the

equilibrium equation with the help of the potential energy P ¼ U 	 W . The strain energy expression and
work done by the applied load are both functions of the unknown terms of the displacement vector fCg.
Using the minimum potential energy condition at the stable equilibrium of the plate, i.e. dP ¼ 0, we obtain
equilibrium equation in the following form:
fdCgTð½k�fCg 	 f�ppgÞ ¼ 0 or

½k�fCg ¼ f�ppg
ð17Þ
In the above, ½k� ¼ ½kL� þ ½kNL�. It should be kept under notice that the nonlinear part of the stiffness matrix
½k� is dependent upon the deformed configuration of the plate.
5. Numerical results and discussions

An energy method is developed in this paper for the analysis of plates with internal and external

boundaries. The dimensionless transverse deflection (w=h) is calculated by varying the uniformly distributed
transverse load normalized by (Q ¼ pa4=Eh4). The models selected for the analysis are: rectangular plate
with a circular opening at the geometric centre, annular circular plate and circular plate with square

opening at the centre. Because of the symmetry with regards to the geometry, load and the boundary

conditions, only one quarter of the plate is analysed by enforcing the following conditions:
v ¼ b2 ¼ 0 on the x-axis
u ¼ b1 ¼ 0 on the y-axis

ð18Þ
Case 1. Rectangular plate with a circular opening. Shown in Fig. 3 is the quarter model of a rectangular

plate having its length and width as (a) and (b) respectively. This plate also has a circular opening of di-
ameter (d) at the geometric centre and the load considered is uniformly distributed over the surface area.
The symmetry conditions given in Eq. (18) are used on edges AB and ED respectively. The quarter plate

model is further subdivided into four segments identified by Roman numerals I–IV in Fig. 3.
In the present scheme, which can also be termed as the sub-parametric finite element formulation, two

types of grid points are introduced. The first type includes eight geometric nodes, which are located at the
Fig. 3. Quarter of a rectangular plate with circular opening.
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four corners and mid points of the four edges of each segment (Fig. 1). The second type includes the

displacement grids (or nodes), the number of which depends upon polynomial orders used in generating

the displacement field functions (Fig. 2). In the present analysis, fourth order polynomials in both n and g
directions are used for each segment and therefore, the grid size for each segment is 5
 5 with 25 points.
The model is also assigned grid points with global significance. Since fourth order interpolation func-

tions are used in both n and g directions, there are nine nodes on each of APB, BCD, DRE, EFA, PQR and
FQC. In all, there are 9
 9 ¼ 81 displacement grid points, each having five degrees of freedom corre-

sponding to u, v, w, b1 and b2. The size of the stiffness matrix and load vector for each segment is
25
 5 ¼ 125. The same for the entire model is 81
 5 ¼ 405. Numerical results are obtained for the cases
identified by the following boundary conditions. The stiffness matrices for all of four segments are com-

puted separately and then assembled to obtain the overall stiffness matrix for the entire model. Similarly,

the load vector is generated for each segment and then assembled as a global load vector. The nonlinear
equation of equilibrium (17) is solved iteratively (Singh and Elaghabash, 2003). The thickness to length

ratio (h=a) used in all the calculations is 0.01.

(i) Outside boundary pinned and inside free. For this case, the outside boundary BCD is subjected to:
u ¼
no

u

u

u ¼
u ¼
v ¼ w ¼ 0 on BC and CD; and

condition on the inside boundary EFA:
ð19Þ
(ii) Outside boundary pinned and inside edge constrained in the plane of the plate. The displacement

boundary conditions used for this case are:
¼ v ¼ w ¼ 0 on BC and CD; and

¼ v ¼ b1 ¼ b2 ¼ 0 on the inside boundary EFA:
ð20Þ
(iii) Outside boundary fixed and inside free. For this case, the outside boundary BCD is subjected to the

following:
u ¼ v ¼ w ¼ b1 ¼ b2 ¼ 0 and

no condition on EFA:
ð21Þ
(iv) Outside boundary fixed and inside edge constrained in the plane of the plate. For this case, the bound-

ary conditions used are:
v ¼ w ¼ b1 ¼ b2 ¼ 0 on the edge BCD and

v ¼ b1 ¼ b2 ¼ 0 on the edge EFA:
ð22Þ
Figs. 4 and 5 show the other two models each having outside circular boundary. Fig. 6 shows the load

(Q ¼ pa4=Eh4) versus deflection (w=h) curves corresponding to case (i) for d=a ¼ 0:0, 0.1, 0.2, 0.3 and 0.4.
For the case of the free opening, deflection results corresponding to d=a > 0:4 are not reported here because
of the convergence problem. Simply results do not converge if d=a > 0:4 and Q > 200. This convergence
problem does not appear when the inside boundary is constrained in the plane of the plate. Results for this

case are presented in Fig. 7 for d=a ¼ 0:0, 0.1, 0.2, 0.3, 0.4 and 0.5. Deflections increase with the load and
are seen to vary monotonically. Results converge rapidly in only a few iterations for the lower load levels,

but the convergence rate deteriorates when both the load (Q) and hole diameter index (d=a) increase. The
deflection at the edge of the hole is lower for higher values of (d=a). As expected, the plate deflection due to
a given load in Fig. 7 is lower than the corresponding case shown in Fig. 6 with no conditions at the circular

opening. The effect of the hole size is very small for the case in which no condition is applied at it. But this
effect becomes quite significant, if the inside boundary is restrained from in-plane movement. Calculations



Fig. 4. Quarter of an annular circular plate.

Fig. 5. Quarter of a circular plate with square opening.
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are done for the zero diameter hole with and without constraints and the results are plotted in Figs. 6 and 7
using symbol (o). In both cases, the values are very close to each other. Results are also obtained for the

rectangular plates as shown in Fig. 8 for aspect ratios of b=a ¼ 0:5, 0.6, 0.7, 0.8, 0.9 and 1.0. The load/
deflection curve shows similar pattern as that for the square plate and for the same load the deflections

(w=h) increase with the increasing values of (b=a). Numerical results for the fixed square plate with
d=a ¼ 0:0, 0.1, 0.2, 0.3, 0.4 and 0.5 are shown in Figs. 9 and 10 for cases (iii) and (iv) respectively. After
examining Figs. 6 and 9, where no condition is applied at the inside boundary, it is seen that the hole

diameter has very little effect on the deflection of the plate if the outside boundary is pinned and has

considerable influence if the outside boundary is fixed. The influence of the hole diameter is significantly
higher when the inside edge is constrained, as seen in Fig. 10. The present results for d=a ¼ 0 in Figs. 9 and
10 show very good agreement with previously published data by Levy (1942b) for the full square plate.
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Case 2. Annular circular plate. Annular circular plate subjected to uniformly distributed transverse load
is also analysed by considering four segments in the model as shown in Fig. 4. The inside and outside

diameters of the plate are denoted by d and a respectively. The conditions at the inside edge and the
symmetry axes are the same as those as described earlier for the rectangular plate with a circular opening.

Results for the pinned outside edge are presented in Figs. 11 and 12, where the first corresponds to the

case having no restraint at the hole and the second with in-plane restraint. When the inside hole is free,

results do not converge properly if d=a is larger than 0.3 and the curve behaves erratically beyond Q ¼ 200
(Fig. 11). When the in-plane movement of the inside boundary is restrained, convergence is achieved for

cases with d=a being 0.4 and 0.5. The curves are also separated with higher deflections for lower values of
d=a. Results for the clamped circular plate with inside edge free and guided are shown in Figs. 13 and 14
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Fig. 12. Pinned circular plate with guided circular hole.

Fig. 11. Pinned circular plate with free circular hole.
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Fig. 13. Fixed circular plate with free circular hole.

A.V. Singh, U.K. Paul / International Journal of Solids and Structures 40 (2003) 4135–4151 4147
respectively. In these cases, results converge with number of iterations, deflection increases monotonically
with the load and small deflection is found for large size hole.



0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Load (Q=pa4/Eh4)

D
is

pl
ac

em
en

t(
w

/h
)

d/a=0.0
d/a=0.1
d/a=0.2
d/a=0.3
d/a=0.4
d/a=0.5

Fig. 14. Fixed circular plate with guided circular hole.
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Fig. 15. Pinned circular plate with free square hole.
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Fig. 16. Pinned circular plate with guided square hole.
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Case 3. Circular plate with a square opening. Results for the circular plate with a square opening are
presented in Figs. 15–18 with the same combinations of boundary conditions discussed above. The response

of this plate is very similar to those of the circular annular plate.
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Fig. 17. Fixed circular plate with free square hole.
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Fig. 18. Fixed circular plate with guided square hole.

Fig. 19. Clamped square plate with guided circular hole: Q ¼ 500, d=a ¼ 0:3.

Fig. 20. Clamped circular annular plate with guided hole: Q ¼ 500, d=a ¼ 0:3.
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Fig. 21. Clamped circular plate with guided square hole: Q ¼ 500, c=a ¼ 0:3.
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The deflected shapes for the above three cases are shown in Figs. 19–21. The load parameter used for

these plots is 500 and the ratio of hole size (d or c) to the outer physical length (a) considered is 0.3.
6. Concluding remarks

A modified version of the Ritz method has been used for the geometrically nonlinear static analysis of

elastic rectangular and circular plates with openings. Each plate model consists of four quadrilateral seg-
ments, which are then assigned two types of nodal points. The first type consists of eight nodes that define

the geometry of the segment. Using the second type, components of the displacement and rotation of the

normal to the middle surface of the plate are interpolated by much higher order polynomial than the one

used for the geometry. The deflection for a given load is obtained iteratively and increases monotonically

with the load. For the higher load parameter, the convergence is somewhat slow. When the opening size is

in the neighbourhood of 40–50% of the overall size of the plate, results do not converge properly if there is

no constraint on the opening. But when the opening is constrained against in-plane movement, results

converge even for large openings.
The formulation used in the present analysis has many advantages over the finite element method, such

that only a few segments can be used in the analysis of plates having complex geometry. In some finite

element formulations, term in the interpolating function is dropped depending on the number of nodal

points chosen for the element. This can cause inconsistency in the displacement field and be a source of

error. The interpolation function used for the displacement and rotation parameters in the present for-

mulation is complete.
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